Saturday, October 31, 2009

Polyvinyl chloride



Polyvinyl chloride, (IUPAC Poly(chloroethanediyl)) commonly abbreviated PVC, is the third most widely used thermoplastic polymer after polyethylene and polypropylene.[citation needed] In terms of revenue generated, it is one of the most valuable products of the chemical industry. Around the world, over 50% of PVC manufactured is used in construction. As a building material, PVC is cheap, durable, and easy to assemble. The PVC world market grew at an average rate of approximately 5% over the last few years and is expected to reach a volume of 40 million tons by the year 2016.[citation needed]

It can be made softer and more flexible by the addition of plasticizers, the most widely-used being phthalates. In this form, it is used in clothing and upholstery, and to make flexible hoses and tubing, flooring, to roofing membranes, and electrical cable insulation. It is also commonly used in figurines and in inflatable products such as waterbeds, pool toys, and inflatable structures.


Polyvinyl chloride is produced by polymerization of the vinyl chloride monomer (VCM), as shown. Since about 57% of its mass is chlorine, creating a given mass of PVC requires less petroleum than many other polymers.

By far the most widely used production process is suspension polymerization. In this process, VCM and water are introduced into the polymerization reactor and a polymerization initiator, along with other chemical additives, are added to initiate the polymerization reaction. The contents of the reaction vessel are continually mixed to maintain the suspension and ensure a uniform particle size of the PVC resin. The reaction is exothermic, and thus requires a cooling mechanism to maintain the reactor contents at the appropriate temperature. As the volumes also contract during the reaction (PVC is denser than VCM), water is continually added to the mixture to maintain the suspension.

Once the reaction has run its course, the resulting PVC slurry is degassed and stripped to remove excess VCM (which is recycled into the next batch) then passed though a centrifuge to remove most of the excess water. The slurry is then dried further in a hot air bed and the resulting powder sieved before storage or pelletization. In normal operations, the resulting PVC has a VCM content of less than 1 part per million.

Other production processes, such as micro-suspension polymerization and emulsion polymerization, produce PVC with smaller particle sizes (10μm vs 120-150μm for suspension PVC) with slightly different properties and with somewhat different sets of applications.

The product of the polymerization process is unmodified PVC. Before PVC can be made into finished products, it almost always requires conversion into a compound by the incorporation of additives such as heat stabilizers, UV stabilizers, lubricants, plasticizers, processing aids, impact modifiers, thermal modifiers, fillers, flame retardants, biocides, blowing agents and smoke suppressors, and, optionally pigments.

PVC's intrinsic properties make it suitable for a wide variety of applications. It is biologically and chemically resistant, making it the plastic of choice for most household sewerage pipes and other pipe applications where corrosion would limit the use of metal.

With the addition of impact modifiers and stabilizers, it becomes a popular material for window and door frames. By adding plasticizers, it can become flexible enough to be used in cabling applications as a wire insulator.

Polyvinyl chloride Rating: 4.5 Diposkan Oleh: andhiart ab

0 comments:

Post a Comment

Untuk pembaca yang menginginkan pembahasan atau kunci jawaban dari post soal silahkan wa 08562908044 (fast respond) | monggo tinggalkan kritik, saran, komentar atau apapun ^_^